top of page
Search
alisidishm

solucionario yu takeuchi ecuaciones diferenciales







































This is the case where y = 4 and y’ = 9 If we want to find the distance measured from (0, 0) to (3, 2), we can use the first equation: But we would like that distance to be 8.5 units. So we should use this other equation: So the distance from (0, 0) to (3, 2) is 3 + 4(8.5). The length of the hypotenuse as a whole is therefore 13 units long. It minimizes at 3 + 4 × 8.5 or 33 degrees and maximizes at 3+4 x 41 degrees (+/- 14 degrees). If we want to find the distance measured from (0, 0) to (-2, 3), we can use the first equation: But we would like that distance to be -5.5 units. So we should use this other equation: So the distance from (0, 0) to (-2, 3) is -5 + 4(−5.5) and the length of the hypotenuse as a whole is therefore −9.5 units long. It minimizes at −5+4×−1 or 11 degrees and maximizes at −5+4×44 degrees (+/- 22 degrees). http://web.archive. org/web/20150330014448/http://www.elclubdelmatematico.com/modules.php?name=Content&pa=showpage&pid=13 https://smlcjmjc.wordpress.com/2012/08/09/solucionario-yu-takeuchi-ecuaciones-diferenciales/#comments https://archive. org/details/ecuacionesdifdif01take http://master.mecon.ar.gov.ar/index.php?option=com_content&task=view&id=245&Itemid=42 https://smlcjmjc.files.wordpress.com/2012/08/solucionario-yu-takeuchi-ecuaciones-diferenciales-1ed-spanish-editionpdf.pdf https://archive. org/details/solucionario-yu-takeuchi-ecuaciones-diferenciales-spanish http://scholar.google.com/scholar?hl=en&q=ecuaciones+diferenciales+pdf&btnG=Search&as_sdt=1%2C5&as_ylo=2009https://www.google. eccc085e13

0 views0 comments

Comments


bottom of page